A first-in-man study published by The Lancet shows that new magnetically-controlled growing rods can treat scoliosis in children by being extended using a non-invasive technique as their spine grows, without the repeated invasive surgery used with existing rod technology. The study is by Professor Kenneth Cheung and Dr Dino Samartzis, from the Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, and colleagues.
For children with severe scoliosis who are still growing, traditional practice has been to surgically insert growing rods under general anaesthesia across the segment of the spinal deformity’s curve. These rods need to be lengthened (a procedure called “distraction”) every six months, again under general anaesthesia using invasive surgery and requiring hospitalisation. This “traditional” growing rod surgery is associated with various socioeconomic drawbacks. For instance, children miss school time, and parents might have to take time off work to support their child. Also, the heath-care costs associated with each surgery and hospital stay are substantial. Thus, in this new study, the authors assessed a new remotely distractible, magnetically-controlled growing rod (MCGR) system that allows frequent non-invasive outpatient distractions.
The authors implanted the MCGR in five patients, two of whom have now reached 24 months’ follow-up. Each patient underwent monthly outpatient distractions. Radiography was used to measure the magnitude of the spinal curvature, rod distraction length, and spinal length. Clinical outcome was assessed by measuring the degree of pain, function, mental health, satisfaction with treatment, and procedure-related complications.
In the two patients with 24 months’ follow-up, the mean degree of scoliosis was 67° before implantation and 29° at 24 months. Length of the instrumented segment of the spine increased by a mean of 1·9 mm with each outpatient distraction and in congruence with their normal growth. Throughout follow-up, both patients had no pain, had good functional outcome, and were satisfied with the procedure. No MCGR-related complications were noted.